Namespaces | |
PythonBindings | |
Classes | |
class | ConcatenateKernel |
class | ConstantKernel |
struct | OptInfo |
class | MeanFunctionBase |
class | ZeroMean |
class | LinearMean |
class | LinearTransformMean |
class | SumMean |
class | GaussianProcess |
class | KarhunenLoeveBase |
class | KarhunenLoeveExpansion |
Used to compute and evaluate the Karhunen-Loeve decomposition of a zero mean Gaussian process. @sealso SeperableKarhunenLoeve. More... | |
class | KarhunenLoeveFactory |
class | KernelBase |
Base class for all covariance kernels. More... | |
class | KernelImpl |
Base class in CRTP pattern for covariance kernels. More... | |
class | LinearTransformKernel |
class | MaternKernel |
class | ObservationInformation |
Class for defining linear observations of a Gaussian process. More... | |
class | DerivativeObservation |
Class that defines an observation involving linear combinations of GP derivatives. More... | |
class | ProductKernel |
class | SeparableKarhunenLoeve |
Implements KL expansions that take advantage of separable structure in both the domain and covariance kernel. More... | |
class | SquaredExpKernel |
class | StateSpaceGP |
class | SumKernel |
class | WhiteNoiseKernel |
class | AdaptiveSmolyakPCE |
class | PCEFactory |
Factory class for constructing a pseudo-spectral polynomial chaos approximation using a fixed quadrature rule. More... | |
class | PolynomialChaosExpansion |
A class for representing and using expansions of orthogonal multivariate polynomials. More... | |
class | SmolyakEstimator |
class | BasisExpansion |
Class for defining expansions of basis functions defined by a MultiIndexSet and collection of IndexScalarBasis functions. More... | |
class | HermiteFunction |
A 1D hermite function based on Physicist Hermite Polynomials. More... | |
class | IndexedScalarBasis |
class | Jacobi |
Family of Jacobi orthogonal polynomials. More... | |
class | Laguerre |
Family of Laguerre orthogonal polynomials. More... | |
class | Legendre |
Family of Legendre orthogonal polynomials. More... | |
class | Monomial |
Family of monomial polynomials, i.e. () \(1\), \(x\), \(x^2\), ect. ...) More... | |
class | OrthogonalPolynomial |
A 1D orthogonal polynomial. More... | |
class | PhysicistHermite |
class | ProbabilistHermite |
class | AdaptiveSmolyakQuadrature |
class | ClenshawCurtisQuadrature |
1d Clenshaw Curtis rule More... | |
class | ExponentialGrowthQuadrature |
1d Quadrature rule with exponential growth More... | |
class | FullTensorQuadrature |
Multivariate quadrature rule defined by the tensor product of 1d rules. More... | |
class | GaussPattersonQuadrature |
1d Gauss Patterson nested quadrature rule More... | |
class | GaussQuadrature |
Class for computing Gauss Quadrature rules from an orthogonal polynomial family. More... | |
class | Quadrature |
Base class for multivariate quadrature rules. @detail An abstract class for computing nodes and weights of general quadrature rules. @seealso GaussQuadrature. More... | |
class | SmolyakQuadrature |
Computes static Smolyak quadrature rules for multivariate integration. More... | |
class | LocalRegression |
class | Regression |
class | MatrixBlock |
class | ColumnSlice |
class | VectorSlice |
Functions | |
template<typename KernelType1 , typename KernelType2 > | |
ConcatenateKernel | Concatenate (KernelType1 const &kernel1, KernelType2 const &kernel2) |
double | nlopt_obj (unsigned n, const double *x, double *nlopt_grad, void *opt_info) |
template<typename MeanType , typename = typename std::enable_if<std::is_base_of<MeanFunctionBase, MeanType>::value, MeanType>::type> | |
LinearTransformMean< MeanType > | operator* (Eigen::MatrixXd const &A, MeanType const &K) |
template<typename MeanType1 , typename MeanType2 , typename = typename std::enable_if<std::is_base_of<MeanFunctionBase, MeanType1>::value, MeanType1>::type> | |
SumMean | operator+ (MeanType1 const &mu1, MeanType2 const &mu2) |
template<typename MeanType , typename KernelType > | |
GaussianProcess | ConstructGP (MeanType const &mean, KernelType const &kernel) |
template<typename KernelType > | |
LinearTransformKernel | TransformKernel (Eigen::MatrixXd const &A, KernelType const &K) |
template<typename KernelType , typename = typename std::enable_if<std::is_base_of<KernelBase, KernelType>::value>::type> | |
LinearTransformKernel | operator* (Eigen::MatrixXd const &A, KernelType const &kernel) |
template<typename KernelType1 , typename KernelType2 , typename = typename std::enable_if<std::is_base_of<KernelBase, KernelType1>::value && std::is_base_of<KernelBase, KernelType2>::value, KernelType1>::type> | |
ProductKernel | operator* (KernelType1 const &k1, KernelType2 const &k2) |
std::shared_ptr< ProductKernel > | operator* (std::shared_ptr< KernelBase > k1, std::shared_ptr< KernelBase > k2) |
template<typename KernelType1 , typename KernelType2 , typename = typename std::enable_if<std::is_base_of<KernelBase, KernelType1>::value && std::is_base_of<KernelBase, KernelType2>::value, KernelType1>::type> | |
SumKernel | operator+ (KernelType1 const &k1, KernelType2 const &k2) |
std::shared_ptr< SumKernel > | operator+ (std::shared_ptr< KernelBase > k1, std::shared_ptr< KernelBase > k2) |
template<typename MatrixType > | |
unsigned | GetShape (MatrixType const &mat, unsigned dim) |
template<typename ScalarType , int rows, int cols> | |
unsigned | GetShape (Eigen::Matrix< ScalarType, rows, cols > const &mat, unsigned dim) |
template<typename Derived > | |
unsigned | GetShape (MatrixBlock< Derived > const &mat, unsigned dim) |
template<typename Derived > | |
unsigned | GetShape (Eigen::Ref< Derived > const &mat, unsigned dim) |
template<typename VectorType1 , typename VectorType2 > | |
double | CalcSquaredDistance (VectorType1 const &v1, VectorType2 const &v2, int startDim=0, int endDim=-1) |
Calculates the distance squared between two points defined by vectors v1 and v2. More... | |
template<typename VectorType1 , typename VectorType2 > | |
double | CalcDistance (VectorType1 const &v1, VectorType2 const &v2) |
template<typename MatType > | |
ColumnSlice< MatType > | GetColumn (MatType &matrix, unsigned col) |
template<typename MatType > | |
VectorSlice< MatType > | GetSlice (MatType &matrix, std::vector< unsigned > const &inds) |
template<typename MatType > | |
MatrixBlock< MatType > | GetBlock (MatType &matrix, unsigned rowStart, unsigned colStart, unsigned numRows, unsigned numCols) |
double muq::Approximation::CalcDistance | ( | VectorType1 const & | v1, |
VectorType2 const & | v2 | ||
) |
Calculates the distance between two points defined by vectors v1 and v2.
Definition at line 88 of file TemplatedArrayUtilities.h.
References CalcSquaredDistance(), and GetShape().
double muq::Approximation::CalcSquaredDistance | ( | VectorType1 const & | v1, |
VectorType2 const & | v2, | ||
int | startDim = 0 , |
||
int | endDim = -1 |
||
) |
Calculates the distance squared between two points defined by vectors v1 and v2.
Assumes the vectors are the same size and recursively compute the squared distance between them. The recursion is used for numerical accuracy.
Definition at line 56 of file TemplatedArrayUtilities.h.
References GetShape().
Referenced by CalcDistance().
ConcatenateKernel muq::Approximation::Concatenate | ( | KernelType1 const & | kernel1, |
KernelType2 const & | kernel2 | ||
) |
Definition at line 59 of file ConcatenateKernel.h.
MatrixBlock<MatType> muq::Approximation::GetBlock | ( | MatType & | matrix, |
unsigned | rowStart, | ||
unsigned | colStart, | ||
unsigned | numRows, | ||
unsigned | numCols | ||
) |
Definition at line 235 of file TemplatedArrayUtilities.h.
ColumnSlice<MatType> muq::Approximation::GetColumn | ( | MatType & | matrix, |
unsigned | col | ||
) |
Grab a particular column of a matrix and return as an instance of the "ColumnSlice" class.
Definition at line 222 of file TemplatedArrayUtilities.h.
unsigned muq::Approximation::GetShape | ( | Eigen::Matrix< ScalarType, rows, cols > const & | mat, |
unsigned | dim | ||
) |
Definition at line 30 of file TemplatedArrayUtilities.h.
unsigned muq::Approximation::GetShape | ( | Eigen::Ref< Derived > const & | mat, |
unsigned | dim | ||
) |
Definition at line 45 of file TemplatedArrayUtilities.h.
unsigned muq::Approximation::GetShape | ( | MatrixBlock< Derived > const & | mat, |
unsigned | dim | ||
) |
Definition at line 37 of file TemplatedArrayUtilities.h.
References muq::Approximation::MatrixBlock< MatType >::cols(), and muq::Approximation::MatrixBlock< MatType >::rows().
unsigned muq::Approximation::GetShape | ( | MatrixType const & | mat, |
unsigned | dim | ||
) |
Templated function to get the shape of an array. In Eigen parlance, GetShape(mat,0) is the same as mat.rows() and GetShape(mat,1) is the same as mat.cols().
This function is overloaded to handle general types of arrays. Currently, Kokkos::View<double**> and Eigen matrices are supported.
Definition at line 24 of file TemplatedArrayUtilities.h.
Referenced by CalcDistance(), CalcSquaredDistance(), muq::Approximation::ColumnSlice< MatType >::dimension(), muq::Approximation::MatrixBlock< MatType >::MatrixBlock(), and muq::Approximation::ColumnSlice< MatType >::rows().
VectorSlice<MatType> muq::Approximation::GetSlice | ( | MatType & | matrix, |
std::vector< unsigned > const & | inds | ||
) |
Definition at line 228 of file TemplatedArrayUtilities.h.
double muq::Approximation::nlopt_obj | ( | unsigned | n, |
const double * | x, | ||
double * | nlopt_grad, | ||
void * | opt_info | ||
) |
Definition at line 9 of file GaussianProcess.cpp.
References muq::Approximation::OptInfo::gp, muq::Approximation::GaussianProcess::Kernel(), muq::Approximation::GaussianProcess::MarginalLogLikelihood(), and nlohmann::detail::dtoa_impl::n.
LinearTransformKernel muq::Approximation::operator* | ( | Eigen::MatrixXd const & | A, |
KernelType const & | kernel | ||
) |
Definition at line 77 of file LinearTransformKernel.h.
LinearTransformMean<MeanType> muq::Approximation::operator* | ( | Eigen::MatrixXd const & | A, |
MeanType const & | K | ||
) |
Definition at line 224 of file GaussianProcess.h.
ProductKernel muq::Approximation::operator* | ( | KernelType1 const & | k1, |
KernelType2 const & | k2 | ||
) |
Definition at line 148 of file ProductKernel.h.
std::shared_ptr< ProductKernel > muq::Approximation::operator* | ( | std::shared_ptr< KernelBase > | k1, |
std::shared_ptr< KernelBase > | k2 | ||
) |
Definition at line 176 of file ProductKernel.cpp.
SumKernel muq::Approximation::operator+ | ( | KernelType1 const & | k1, |
KernelType2 const & | k2 | ||
) |
Definition at line 54 of file SumKernel.h.
SumMean muq::Approximation::operator+ | ( | MeanType1 const & | mu1, |
MeanType2 const & | mu2 | ||
) |
Definition at line 270 of file GaussianProcess.h.
Referenced by nlohmann::detail::json_reverse_iterator< Base >::operator+().
std::shared_ptr< SumKernel > muq::Approximation::operator+ | ( | std::shared_ptr< KernelBase > | k1, |
std::shared_ptr< KernelBase > | k2 | ||
) |
Definition at line 80 of file SumKernel.cpp.
LinearTransformKernel muq::Approximation::TransformKernel | ( | Eigen::MatrixXd const & | A, |
KernelType const & | K | ||
) |
Definition at line 70 of file LinearTransformKernel.h.