#include <ConcatenateKernel.h>
@class ConcatenateKernel @ingroup CovarianceKernels @brief Concatenates two kernels together. @details Let \f$k_1(x,x^\prime)\f$ and \f$k_2(x,x^\prime)\f$ be two different covariance kernels with the same inputs. This class describes a concatenated kernel of the form
\[ k(x,x^\prime) = \left[\begin{array}{cc}k_1(x,x^\prime) & 0\\ 0 & k_2(x,x^\prime)\end{array}\right]. \]
Definition at line 21 of file ConcatenateKernel.h.
Public Member Functions | |
ConcatenateKernel (std::shared_ptr< KernelBase > const &kernel1In, std::shared_ptr< KernelBase > const &kernel2In) | |
ConcatenateKernel (std::vector< std::shared_ptr< KernelBase >> const &kernelsIn) | |
virtual | ~ConcatenateKernel ()=default |
virtual std::shared_ptr< KernelBase > | Clone () const override |
virtual void | FillBlock (Eigen::Ref< const Eigen::VectorXd > const &x1, Eigen::Ref< const Eigen::VectorXd > const &x2, Eigen::Ref< const Eigen::VectorXd > const ¶ms, Eigen::Ref< Eigen::MatrixXd > block) const override |
virtual void | FillPosDerivBlock (Eigen::Ref< const Eigen::VectorXd > const &x1, Eigen::Ref< const Eigen::VectorXd > const &x2, Eigen::Ref< const Eigen::VectorXd > const ¶ms, std::vector< int > const &wrts, Eigen::Ref< Eigen::MatrixXd > block) const override |
virtual std::tuple< std::shared_ptr< muq::Modeling::LinearSDE >, std::shared_ptr< muq::Modeling::LinearOperator >, Eigen::MatrixXd > | GetStateSpace (boost::property_tree::ptree sdeOptions=boost::property_tree::ptree()) const override |
Returns a state space representation of the covariance kernel. More... | |
Public Member Functions inherited from muq::Approximation::KernelBase | |
KernelBase (unsigned int inputDimIn, unsigned int coDimIn, unsigned int numParamsIn) | |
KernelBase (unsigned int inputDimIn, std::vector< unsigned int > dimIndsIn, unsigned int coDimIn, unsigned int numParamsIn) | |
virtual | ~KernelBase () |
virtual std::vector< std::shared_ptr< KernelBase > > | GetSeperableComponents () |
Overridden by ProductKernel. More... | |
virtual Eigen::MatrixXd | Evaluate (Eigen::VectorXd const &x1, Eigen::VectorXd const &x2) const |
virtual Eigen::MatrixXd | BuildCovariance (Eigen::MatrixXd const &x) const |
virtual Eigen::MatrixXd | BuildCovariance (Eigen::MatrixXd const &x1, Eigen::MatrixXd const &x2) const |
virtual void | FillCovariance (Eigen::MatrixXd const &xs, Eigen::MatrixXd const &ys, Eigen::Ref< Eigen::MatrixXd > cov) const |
virtual void | FillCovariance (Eigen::MatrixXd const &xs, Eigen::Ref< Eigen::MatrixXd > cov) const |
virtual void | FillDerivCovariance (Eigen::MatrixXd const &xs, Eigen::MatrixXd const &ys, std::vector< int > const &wrts, Eigen::Ref< Eigen::MatrixXd > cov) const |
virtual Eigen::MatrixXd | GetPosDerivative (Eigen::VectorXd const &x1, Eigen::VectorXd const &x2, std::vector< int > const &wrts) const |
Returns derivatives of the kernel with respect to the first input, x1. More... | |
virtual Eigen::MatrixXd | GetParamBounds () const |
virtual Eigen::VectorXd | GetParams () const |
virtual void | SetParams (Eigen::VectorXd const ¶ms) |
Additional Inherited Members | |
Public Attributes inherited from muq::Approximation::KernelBase | |
const std::vector< unsigned int > | dimInds |
const unsigned int | inputDim |
const unsigned int | coDim |
const unsigned int | numParams |
|
inline |
Definition at line 26 of file ConcatenateKernel.h.
ConcatenateKernel::ConcatenateKernel | ( | std::vector< std::shared_ptr< KernelBase >> const & | kernelsIn | ) |
Definition at line 9 of file ConcatenateKernel.cpp.
References muq::Approximation::KernelBase::cachedParams, kernels, and muq::Approximation::KernelBase::numParams.
|
virtualdefault |
|
inlineoverridevirtual |
Implements muq::Approximation::KernelBase.
Definition at line 33 of file ConcatenateKernel.h.
References kernels.
|
staticprivate |
Definition at line 72 of file ConcatenateKernel.cpp.
|
staticprivate |
Definition at line 79 of file ConcatenateKernel.cpp.
|
overridevirtual |
For particular points and parameters, this function fills in one block of the covariance matrix.
Implements muq::Approximation::KernelBase.
Definition at line 28 of file ConcatenateKernel.cpp.
References muq::Approximation::KernelBase::coDim, and kernels.
|
overridevirtual |
Evaluates a first or higher order derivative of the covariance kernel with respect to one of the position variables.
Implements muq::Approximation::KernelBase.
Definition at line 49 of file ConcatenateKernel.cpp.
References muq::Approximation::KernelBase::coDim, and kernels.
|
overridevirtual |
Returns a state space representation of the covariance kernel.
If this is a one dimensional kernel (i.e., inputDim=1 and coDim=1), this function returns a state space representation of the covariance kernel. In particular, it returns a linear time invariant stochastic differential equation, whose solution, when started with the returned stationary covariance, provides the same information as this Gaussian process. The first component of the vector-valued stochastic differential equation is related to the Gaussian process. See "Kalman filtering and smoothing solutions to temporal Gaussian process regression models," by Jouni Hartikainen and Simo Sarkka, for more information.
Reimplemented from muq::Approximation::KernelBase.
Definition at line 88 of file ConcatenateKernel.cpp.
References kernels.
|
private |
Definition at line 53 of file ConcatenateKernel.h.
Referenced by Clone(), ConcatenateKernel(), FillBlock(), FillPosDerivBlock(), and GetStateSpace().