Tools for defining and working with Gaussian processes.
This group contains classes for defining Gaussian processes and performing Gaussian process regression.
const unsigned numFields = 1;
const unsigned dim = 1;
const unsigned numobs = 100;
const unsigned numPred = 10;
Eigen::MatrixXd trainLocs(dim, numObs);
Eigen::MatrixXd trainData(numFields, numObs);
Eigen::MatrixXd predLocs(dim, numPred);
const double lengthScale = 0.35;
const double variance = 2.0;
auto kernel = SquaredExpKernel(dim, variance, lengthScael);
auto gp = GaussianProcess(mean, kernel);
Eigen::MatrixXd postMean, postCov;
std::tie(postMean, postCov) = gp.Predict(predLocs);
◆ ConstructGP()
template<typename MeanType , typename KernelType >
GaussianProcess muq::Approximation::ConstructGP |
( |
MeanType const & |
mean, |
|
|
KernelType const & |
kernel |
|
) |
| |