Definition at line 29 of file PyDistribution.h.
|
| virtual | ~PyGaussianBase ()=default |
| |
| | GaussianBase (unsigned int dim) |
| |
| | GaussianBase (unsigned int dim, Eigen::VectorXi const &hyperSizesIn) |
| |
| | GaussianBase (Eigen::VectorXd const &meanIn) |
| |
| | GaussianBase (Eigen::VectorXd const &meanIn, Eigen::VectorXi const &hyperSizesIn) |
| |
| virtual Eigen::VectorXd | SampleImpl (ref_vector< Eigen::VectorXd > const &inputs) override |
| | Sample the distribution. More...
|
| |
| | GaussianBase (unsigned int dim) |
| |
| | GaussianBase (unsigned int dim, Eigen::VectorXi const &hyperSizesIn) |
| |
| | GaussianBase (Eigen::VectorXd const &meanIn) |
| |
| | GaussianBase (Eigen::VectorXd const &meanIn, Eigen::VectorXi const &hyperSizesIn) |
| |
| virtual | ~GaussianBase ()=default |
| |
| virtual unsigned int | Dimension () const |
| |
| virtual Eigen::MatrixXd | ApplyCovariance (Eigen::Ref< const Eigen::MatrixXd > const &x) const =0 |
| |
| virtual Eigen::MatrixXd | ApplyPrecision (Eigen::Ref< const Eigen::MatrixXd > const &x) const =0 |
| |
| virtual Eigen::MatrixXd | ApplyCovSqrt (Eigen::Ref< const Eigen::MatrixXd > const &x) const =0 |
| |
| virtual Eigen::MatrixXd | ApplyPrecSqrt (Eigen::Ref< const Eigen::MatrixXd > const &x) const =0 |
| |
| virtual Eigen::VectorXd const & | GetMean () const |
| |
| virtual void | SetMean (Eigen::VectorXd const &newMu) |
| |
| virtual double | LogDeterminant () const |
| |
| virtual void | ResetHyperparameters (ref_vector< Eigen::VectorXd > const ¶ms) |
| |
| virtual Eigen::VectorXd | GradLogDensityImpl (unsigned int wrt, ref_vector< Eigen::VectorXd > const &inputs) override |
| |
| virtual Eigen::VectorXd | ApplyLogDensityHessianImpl (unsigned int wrt1, unsigned int wrt2, ref_vector< Eigen::VectorXd > const &inputs, Eigen::VectorXd const &vec) override |
| |
| | Distribution (unsigned int varSizeIn, Eigen::VectorXi const &hyperSizesIn=Eigen::VectorXi()) |
| |
| virtual | ~Distribution ()=default |
| |
| virtual double | LogDensity (ref_vector< Eigen::VectorXd > const &inputs) |
| | Evaluate the log-density. More...
|
| |
| virtual double | LogDensity (std::vector< Eigen::VectorXd > const &inputs) |
| |
| | VARIADIC_TO_REFVECTOR (LogDensity, Eigen::VectorXd, double) |
| |
| virtual Eigen::VectorXd | GradLogDensity (unsigned int wrt, std::vector< Eigen::VectorXd > const &inputs) |
| |
| virtual Eigen::VectorXd | GradLogDensity (unsigned int wrt, ref_vector< Eigen::VectorXd > const &inputs) |
| |
| template<typename... Args> |
| Eigen::VectorXd | GradLogDensity (unsigned int wrt, Args... args) |
| |
| virtual Eigen::VectorXd | ApplyLogDensityHessian (unsigned int const inWrt1, unsigned int const inWrt2, ref_vector< Eigen::VectorXd > const &input, Eigen::VectorXd const &vec) |
| |
| virtual Eigen::VectorXd | ApplyLogDensityHessian (unsigned int const inWrt1, unsigned int const inWrt2, std::vector< Eigen::VectorXd > const &input, Eigen::VectorXd const &vec) |
| |
| Eigen::VectorXd | Sample (ref_vector< Eigen::VectorXd > const &inputs) |
| | Sample the distribution. More...
|
| |
| Eigen::VectorXd | Sample (std::vector< Eigen::VectorXd > const &inputs) |
| |
| Eigen::VectorXd | Sample () |
| | Sample the distribution with no inputs. More...
|
| |
| | VARIADIC_TO_REFVECTOR (Sample, Eigen::VectorXd, Eigen::VectorXd) |
| |
| std::shared_ptr< Density > | AsDensity () |
| | Returns a density built from this distribution. More...
|
| |
| std::shared_ptr< RandomVariable > | AsVariable () |
| | Returns a random variable built from this distribution. More...
|
| |